Find the vertical force under the front tires (point A) and rear tires (point B) due to the the 2 forces shown. As always, include a FBD and clearly label all variables used in your calculations.

The truck is being towed by a 450th force. Find the vertical force under the front tires (point A) and rear tires (point B) due to the the 3 forces shown. Assume the rear tire's brakes are on. As always, include a FBD and clearly label all variables used in your calculations.

Find the minimum value of P required to make the cart tip about point A. Assume the rear wheel's brakes (point A) are on. *Hint: Think about what happens to the reaction at B when it starts to rotate.* As always, include a FBD and clearly label all variables used in your calculations.

Find the vertical force under the front wheels (point B) and rear wheels (point A) due to the cart's 320th weight, the 120th crate, and the tension in the rope. Assume the rear wheel's brakes (point A) are on. As always, include a FBD and clearly label all variables used in your calculations.

HW: 4-1-6 Find the minimum value of P that will cause the beam to tip about A. Hint: Think about what happens to the reaction at B when it starts to rotate. As always, include a FBD and clearly label all variables used in your calculations. Ρ Answer(s): В 2^m 500^N **4**^m 6.5^m

Find the reactions at A and the tension in wire CD that passes through the frictionless pulleys. As always, include a FBD and clearly label all variables used in your calcula-tions.

The surface at B is frictionless and the 800^N force is parallel to the beam's axis. Find the reactions at A and B. As always, include a FBD and clearly label all variables used in your calculations.

Find the reactions at the fixed support A. The radius of the frictionless pulley is 6ⁱⁿ. As always, include a FBD and clearly label all variables used in your calculations.

		Answer(s):	
A	B		
	70 ⁱⁿ → 500 ^{lb}		

Find the reactions at the fixed support A. Ignore the size of the frictionless pulley at D. As always, include a FBD and clearly label all variables used in your calculations.

